A	dvance composite	1		2		3					
Mate	erial	Carbon-based Aluminum Compos	ite	Carbon-based Aluminum Co	mposite	Metal-based Ceramics Composite					
		ACM-a		ACM-io)	AC-Alox					
Appl	ied as	Heat Sink for LED Heat Sink for IGBT Power Device		Semiconductor Packaging Fixture Reflow Tray Carrier Pallet		Heater <300C Furnace Component in CVD/PVD Chamber Bolt/Nut used in High Temperature					
Featured Property		Excellent Heat Dissipation Low Coefficient of Thermal Expans Lightweight	ion	Low Coefficient of Thermal Expans Lightweight Low Contamination Rate by Carbo	sion n Particles	Anti Corrosion against Corrosive Gas Uniformity in Thermal Conductivity Excellent Dimensional Stability at High Temperature Low Internal Void Rate					
Com	petitor	AlN Ceramics Substrate		Carbon, SUS		Aluminum Alloy A1050, A5052, A6061 and etc. Nickel-based Alloy Inconel and etc.					
Description		ACM-a is the material in which molten alumi infiltrated into carbon bulk. Voids in carbon bulk is infiltrated with alumi ACM-a enables high thermal diffusivity and o The material also has low coefficient of therr as well as durability against heat shock. It gets no crack after heat cycle test (0-400C cycles)/ This property helps solve the heat-related tr the crack in solder in high power semicondur As well as the above, ACM-a has supreme the emissivity to metals like copper. It makes ACM-a the suitable material for the dissipating fins.	num alloy is num. onductivity. nal expansion by 100 ouble such as ctor. ermal heat	ACM-io is the material in which molten all infiltrated into carbon bulk. Compared to carbon, ACM-io is mechanica good machinability and low rate of carbon surface. The material has low coefficient of therma Plating and coating can be applied for ACI Strike, Iridium, TiAlN, and such. Its application is fixtures and trays used i packaging/assembly process. Also, the material is an excellent candidat design is required. ACM-io is favored to replaces carbon, SUS	uminum alloy is ally stronger, has a dust off the al expansion. M-io - Nickel, Au n semiconductor te if very precise S, magnesium.	 AC-Alox is the composite of alluminum alloy and aluminum-oxide(Alumina). The composite properties can be arranged by changing the compound recipe. For example, we can offer the property options as following -a. Alox-F If high tensile strength and dimensional stability at high temperature is needed. -b. Alox-P If resistance against damping force and high temperature is needed. Its application is heaters in semiconductor process mahine, CVD and PVD chambers. Also, AC-Alox has high resistance against chemical corrosion, thus it can be used for bolts and nuts used in the chamber filled with chemicals. 					
Mech	Tensile Strength	Z:25	TCE MPa	Advance ₇₀ compo	DISITE MPa	Advance somposite	MPa				
nanical P	Bending Strength	XY:19~27 Z:39~53	MPa	93	MPa	450	МРа				
ropertie	Young's Modulus	XY:1.5~2.2 Z:3.7~4.9	GPa	16	GPa	150	GPa				
s	Coefficient of Thermal Expansion	6.8~7.4	ppm/K	7~8	ppm/K	11~14	ppm/K				
Therma	Specific Heat (Cp)	0.705	J/g•K	0.75	J/g•K	0.995	J/g•K				
l Propert	Thermal Diffusivity (α)	XY:1.27 Z:2.44	cm2/sec	1.04	cm2/sec	0.28	cm2/sec				
ties	Thermal Conductivity (λ)	XY:188 Z:361	W/m•K	164	W/m•K	90	W/m•K				
	Density(<i>p</i>)	2.1	g/cm3	2.1	g/cm3	3.2	g/cm3				
Available Material Size (To be discussed)		250 x 190 x t150 mm		250 x 190 x t150	mm	250 x 200 x t10~t80	mm				

Advance Composite

4		5		6		7	Advance composite		
	Metal-based C	eramics Composite			Material				
AC-A	Alsic	AC-Albolo	n	AC8A (by Our Process)		ADC14 (by Our Process)			
Standard	High thermal conduction	1							
Heat Spreader Heatsink for IGBT Reflow Tray	MOSFET	X-Y Stage for Semiconductor Producti High Speed Mobile Part Mobile Parts Requiring Precise Positio	on Equipment. oning	The Scrolling Part for Air Comp Parts To Withstand Vibration	ressors	Sleeve Part used in Injection Molding	Applied as		
LHigh Thermal Cor High Mechanical S Low Coefficient of	nductivity Strength Thermal Expansion	As Robust As Cast Iron As Lightweight As Aluminu High Thermal Resistance	m	Extremely Low Void Rate High Mechanical Strength High Robustness		Extremely Low Void Rate High Mechanical Strength High Friction Resistance	Featured Property		
Ceram	nics	Metal like Cast Iron and S	US	_		_	Competitor		
Molten aluminum is infilt known to have high mech thermal conductivity, but machine. Thus, AC-Alsic material as heatsink for semiconducter. Also, our process enable heaters. We machine the preform, in which the sho Molten aluminum wraps Alsic heater.	trated into SiC. SiC is hanical strength and t is extremely hard to : is the suitable high power es to make Alsic e heater pattern in SiC eathed heater is placed. the structure to make	AC-Albolon is with lightweight, high y modulus, and good machinability. Among conventional material for robe and X-Y table, steel is too heavy for t make high accurate positioning. Mea aluminum alloy is lightweight but its modulus is low so that vibration in hi movement can degrade the dimension Ceramics are expensive to machine a breakable. AC-Albolon can provide the solution.	young's otic arms he part to nwhile young's igh speed n. nd easily	AC8A is the casting-grade aluminum has low coefficient of thermal expans alloy composition is Al-Si-Cu-Ni-Mg, good resistance against high temper friction. Our process enables AC8A to have th furthermore densified metal tissue. rate is extremely low so that its mec strength is improved compared to ge AC8A. We supply our AC8A alloy, and our cu builds up the scrolling parts for air compressors.	alloy which sion. Its and it has ature and ne The void hanical eneral ustomer	ADC14 is a favored material for its me strength, resistance against friction. particular, mechanical strength at hig temperature is excellent. Hyper Silumin alloys, including ADC14 general hard to cast in the mold. Our enables ADC14 to get the fine tissue. We can supply φ150~450(mm) of ADC	Description		
190	MPa	290	MPa	270~320	MPa	370	MPa	Tensile Strength	Mec
300 ~	~ 350 MPa	350	MPa	_	MPa		MPa	Bending Strength	Ianical F
200 ~	~ 240 GPa	115	GPa	81	GPa		GPa	Young's Modulus	ropertie
8~11	6~8 ppm/K	12	ppm/K	20	ppm/K	18	ppm/K	Coefficient of Thermal Expansion	S
0.8	0.8 J/g•K	0.92	J/g•K		J/g∙K		J/g•K	Specific Heat (Cp)	Therma
0.5~0.6	1.15 cm2/sec	0.3	cm2/sec	_	cm2/sec	_	cm2/sec	Thermal Diffusivity (α)	l Proper
130 ~ 150	250 W/m·K	81	W/m•K	_	W/m∙K	_	W/m•K	Thermal Conductivity (λ)	lies
2.9 ~ 3.0	3.0 g/cm3	2.8	g/cm3	2.7	g/cm3	2.8	g/cm3	Density(<i>p</i>)	
250 x 200 x t10~t80 250 x 200 x t10 mm		200 x 500 x t100	mm	Depending on tooling	mm	Depending on tooling	mm	Available Material (To be disc	l Size cussed)
Advance Composite Corp	oration	(05.2019) www.advance-cor	nposite.co.jp			Note: The data abo	veis only fo	r your referen	ce.)

Material Name		Copper	Aluminum	Magnesium	Ste	el	SUS	Titanium	Silicon	Carbon	Silicon Carbide	Silic Nitri	on de	Aluminum Nitride	Aluminum Oxide	
		Cu	Al	Mg	Cast Iron	Rolled Iron	SUS	Ti	Si	C	SiC	Si	₃ N ₄	AlN	Al ₂ O ₃	
Density * →Gross Density ** →Bulk Density g/cm3		8.9	2.70	1.77	7.30	7.8	7.93	4.5	2.3	1.8*	3.2*	-	3.2*	3.4*	3.9*	
Mec	Tensile Strength MPa	195	75	270	245~294	400~510	520	340~510	-	27	-	-	-	-	-	Mec
hanica	Bending Strength MPa	-	-	-	441~539	-	-	-	120	52.3	450	750	610	310	400	hanica
l Properties	Young's Modulus GPa	117	71	45	108~127	211	193	106	188	10.8	440	-	290	320	380	l Properties
	Poisson's Ratio	0.34	0.35	0.35	0.27	0.29	0.3	0.32	-	-	0.17	-	0.28	0.24	0.23	
Thermal Properties	Coefficient of Thermal Expansion ppm/K	17	20	26.8	11.5~12	11.7	17.6	8.4	2.4	4.5	3.7	2.5	2.6	4.6	7.2	Thermal Properties
	Specific Heat Cp J/g•K	0.39	0.92	1.04	0.50~0.54	-	0.59	0.52	0.76	0.7098	0.67	-	0.66	0.71	0.79	
	Thermal Diffusivity <i>a</i> ^{cm2/sec}	1.12	0.9	-	-	-	3.57	0.09	-	1.01	0.66	-	0.06	0.62	0.11	
	Thermal Conductivity λ W/m·K	390	220	77~85	48~52	-	16.7	22	168	128	200	90	20	150	34	
												10	10	1/		m
lectrica	Dielectric Strength K V/mm	1 7	-	-	-	-	- 72.0	-	-	-	- 101/	10	10 > 10 ²⁰	14	- > 10 ²⁰	lectrical Prop
al Prop	Specific Resistance μΩ • cm	1.7	2.8	-	00~/0	-	-	-	4.UX1U	IU	1014	>10-1	>10	>1020	>1020	
erties	Conductivity ×10 ^δ Ω ⁻¹ • m ⁻¹	59.6	37.7	-	-	-		-	-	-	-	-	-	-	-	erties
Data above refers to the following materials.		C1020	A1050-0	AZ31	FC250	SS400		TP340C			SC1000		SN-220	AN216A	A-601D A-601L	
		Adv	ance compos	site		Ad	vance comp	osite		Adva	nce compos	ite		А	dvance comp	osite